Логарифмические уравнения и решение логарифмических уравнений входят в обязательный комплекс знаний и умений школьника, если он стремится сдать ЕГЭ по математике на высокий балл и поступить в ВУЗ, стать студентом. Рассмотрим, что же это такое — логарифм, логарифмические уравнения и как их решать.
Логарифм — что это
Логарифмом числа по основанию по основанию (=c)называется такой показатель степени =c)называется такой показатель степени , в которую нужно возвести , чтобы получить , чтобы получить (то есть ). При этом задаются ограничения: ). При этом задаются ограничения: . Значение логарифма может быть любым.
Вычислите:
, , .
1. Действуем по определению. Подберем степень, в которую нужно возвести 3, чтобы получить 27.
.
2. При возведении , значит , значит .
Ответ: 3; -3.
Изобретенные в 17 веке для ускорения вычислений, логарифмы значительно сократили время, необходимое для умножения многозначных чисел. Они были основными в числовой работе более 300 лет, пока совершенство механических вычислительных машин в конце 19 века и компьютеров в 20 веке не сделали их устаревшими для крупномасштабных вычислений. Однако натуральный логарифм (с основанием e ≅ 2.71828 и записываемый как ln n) продолжает оставаться одной из наиболее полезных функций в математике с приложениями к математическим моделям в физических и биологических науках.
Логарифмическая функция и ее график
Помня об ограничениях, построим по точкам графики логарифмической функция в разных случаях.
Пусть . Подставим вместо . Подставим вместо разные числа и определим соответствующие значения переменной.
1 | 2 | 4 | ||
-1 | 0 | 1 | 2 |
Отметим координаты точек на плоскости и соединим их плавной линией.
Логарифмическая функция все время возрастает.
Такое поведение характерно для всех логарифмических функций с основанием больше единицы.
Пусть теперь . Составим таблицу значений для этого случая.
1 | 2 | 4 | ||
1 | 0 | -1 | -2 |
Получим следующий график функции:
Все логарифмические функции с основанием от 0 до 1 убывают на всей области определения.
Графики всех логарифмических функций проходят через точку с координатами (1;0).
Особыми знаками принято обозначать логарифмы с основанием десять и логарифмы с натуральным основанием и логарифмы с натуральным основанием .
Свойства логарифмов
Для упрощения вычислений при работе с логарифмами полезно знать и уметь использовать основные свойства.
Логарифмы были быстро приняты учеными из-за различных полезных свойств, которые упростили долгие, утомительные вычисления.
В частности, ученые могли найти произведение двух чисел m и n, посмотрев логарифм каждого числа в специальной таблице, сложив логарифмы, а затем снова сверившись с таблицей, чтобы найти число с этим вычисленным логарифмом (известным как его антилогарифм). Выраженная в терминах обычных логарифмов, эта связь определяется как log m n = log m + log n.
Например, 100 × 1000 можно рассчитать, просмотрев логарифмы 100 по основанию 10 и 1000 и 1000 . Сложив логарифмы , а затем найдя его антилогарифм (то есть число, стоящее под знаком логарифма, в данном случае 100000) в таблице.
Аналогично, задачи деления преобразуются в задачи вычитания с логарифмами: log m/n = log m — log n.
Это еще не все. Расчет степеней и корней может быть упрощен с использованием логарифмов. Логарифмы также могут быть преобразованы между любыми положительными основаниями (за исключением того, что 1 не может использоваться в качестве основания, поскольку все его степени равны 1).
В логарифмические таблицы обычно включались только логарифмы для чисел от 0 до 10. Чтобы получить логарифм некоторого числа вне этого диапазона, число было сначала записано в удобном виде как произведение его значащих цифр и его степени по основанию 10 —
например, 358 будет записано как 3,58 × 10 2,
а 0,0046 будет записано как 4,6 × 10-3.
Тогда логарифм значащих цифр — десятичная дробь между 0 и 1, известная как мантисса — будет найдена в таблице. Например, чтобы найти логарифм 358, можно посмотреть таблицу значений логарифмов 3,58 ≅ 0,55388. Следовательно, lg 358 = lg 3,58 + lg 100 = 0,55388 + 2 = 2,55388.
В примере числа с отрицательным показателем степени, такого как 0,0046, можно посмотреть lg 4,6 ≅ 0,66276. Следовательно, lg 0,0046 = lg 4,6 + lg 0,001 = 0,66276 — 3 = -2,33724.
История логарифмов
Изобретению логарифмов предшествовало сравнение арифметических и геометрических последовательностей.
В геометрической последовательности каждый член образует постоянное соотношение (знаменатель прогрессии) с предыдущим и последующим членами прогрессии: например,… 1/1000, 1/100, 1/10, 1, 10, 100, 1000… имеет общее отношение 10. В арифметической последовательности каждый последующий член отличается на константу, известную как разность прогрессии, например,… −3, −2, −1, 0, 1, 2, 3… имеет разность 1.
Обратите внимание, что геометрическая последовательность может быть записана в терминах ее общего отношения, для приведенной выше примерной геометрической последовательности:… 10−3, 10 −2, 10 −1, 10 0, 10 1, 10 2, 10 3….
Умножение двух чисел в геометрической последовательности, скажем, 1/10 и 100, равно суммированию соответствующих показателей степеней с основанием 10: -1 и 2, чтобы получить 10 1 = 10. Таким образом, умножение преобразуется в сложение.
Однако первоначальное сравнение между двумя возможностями вычислений произведения не было основано на каком-либо явном использовании экспоненциальной записи: это было последующее развитие.
В 1620 году в Праге швейцарским математиком Йостом Бурги была опубликована первая таблица, основанная на концепции соотношения геометрических и арифметических последовательностей.
Шотландский математик Джон Непер опубликовал свое открытие логарифмов в 1614 году. Его целью было помочь в умножении величин, которые были связаны с вычислением синуса в прямоугольном треугольнике.
Вычисления Непера и Бригса
В сотрудничестве с английским математиком Генри Бригсом Непер приспособил свой логарифм к его современной форме. Для неперова логарифма сравнение будет происходить между точками, движущимися по градуированной прямой линии, точка L (для логарифма) движется равномерно от минус бесконечности до плюс бесконечности, точка Х (для синуса) движется от нуля до бесконечности со скоростью пропорционально его расстоянию от нуля. Кроме того, L равно нулю, когда X равно единице, и их скорость в этой точке равна.
Суть открытия Непера состоит в том, что он связал между собой арифметические и геометрические прогрессии — то есть умножение и возведение в степень значений точки X соответствуют сложению и умножению значений точки L соответственно. На практике удобно ограничивать движение L и X требованием, чтобы L = 1 при X = 10, в дополнение к условию, что X = 1 при L = 0. Это изменение привело к бригиану, или общему логарифму.
Непер умер в 1617 году, а Бригс продолжил расчеты в одиночку, опубликовав в 1624 году таблицу логарифмов, рассчитанную до 14 знаков после запятой для чисел от 1 до 20 000 и от 90 000 до 100 000. Но и в таблицах Бригса обнаружились ошибки. Первое безошибочное издание на основе таблиц Георга Веги появилось только в 1857 году в Берлине.
В 1620-е годы Эдмунд Уингейт и Уильям Отред изобрели первую логарифмическую линейку, до появления карманных калькуляторов — логарифмические линейки были незаменимы в инженерных расчетах.
Современное определение логарифмирования — как операции, обратной возведению в степень — впервые появилось у Валлиса и Иоганна Бернулли, а окончательно было узаконено Эйлером в XVIII веке. Эйлеру принадлежит и заслуга распространения логарифмической функции на комплексную область.
Где используются логарифмы
Некоторые области науки, где применяются логарифмы:
- Децибелы, используемые для измерения звукового давления, определяются с помощью логарифмов.
- Шкала Рихтера, которая используется для измерения интенсивности землетрясений, определяется с помощью логарифмов
- Значения pH в химии, которое используется для определения уровня кислотности вещества, также определяется с использованием понятия логарифма.
- Когда две измеренные величины оказываются связанными степенной функцией, параметры функции могут быть оценены с использованием логарифмов.
- Логарифмы могут быть использованы для решения уравнений, таких как 2х = 3.
Решение логарифмических уравнений
Рассмотрим простейшие логарифмические уравнения и примеры их решения.
Задание 1
Решите уравнение log5(x2+x)=log5(x2+9)
Ответ:9
Решение: Так как основания логарифмов одинаковы, то числа, стоящие под знаком логарифмов — одинаковы:
,
Задание 2
Решите уравнение logx-5 49 = 2.
Если уравнение с логарифмами имеет более одного корня, в ответе укажите наибольший из них.
Ответ: 12
Решение:
(x – 5)2 = 49;
x2 – 10 x + 25 = 49;
x2 – 10 x – 24 = 0;
a = 1 , b = -10, c = -24;
При х = –2 основание логарифма отрицательно (известно, что основание должно быть положительным). Решением является корень 12. Сделайте проверку.
Задание 3
Найдите корень уравнения log2(4 – x) = 7.
Ответ:-124
Решение:
27 = 4 – x;
128=4-х;
х = 4 – 128;
х = −124.
Задание 4
Найдите корень уравнения .
Ответ: 115
Решение: 27=33, тогда
или или или уравнения с логарифмами. По основному свойству логарифмов: при возведении числа в степень логарифма с таким же основанием, остается число, стоящее под знаком логарифма, то есть: . Тогда получим: . Тогда получим: .
Решая данное уравнение, получим: ,
.
Задание 5
Решите уравнение logx+725 = 2. Если уравнение имеет более одного корня, в ответе укажите наименьший из них.
Ответ: -2
Решение: .
, , .
и и
и и
Так как x должен быть больше -7, то корень не подходит. И остается один единственный корень: не подходит. И остается один единственный корень: .
Таким образом, уже не важно — наибольший это корень или наименьший, он один подходит. Поэтому в ответе указываем его.
Задание 6
Решите уравнение log2(2 – x) = log2(2 – 3x) + 1
Ответ: x=0,4.
Решение: мы знаем, что , тогда пусть в нашем случае , тогда пусть в нашем случае : ,
применяя свойство сложения двух логарифмов с одинаковыми основаниями, получим:
или
.
Задание 7
Решите уравнение log5(7 – x) = log5(3 – x) + 1
Ответ: 2
Решение: мы знаем, что , тогда пусть в нашем случае , тогда пусть в нашем случае : .
применяя свойство сложения двух логарифмов с одинаковыми основаниями, получим:
.
Задание 8
Найдите корень уравнения
Ответ: x=-1
Решение:
.
так как у нас должно выполняться условие:
, откуда , откуда , таким образом нам подходит только один корень .
Итак, мы рассмотрели решение логарифмических уравнений с подробным решением каждого из них. Вы узнали, что такое логарифм, историю возникновения логарифма и имена ученых, которые схватили идею расчета произведения через сложение и изобрели логарифм, который на многие годы облегчил расчеты инженеров, строителей, ученых.