Параллелепипед — тело строгих геометрических форм, противоположные грани которого находятся в параллельных плоскостях. Все плоскости, или грани, включая основание, параллелограммы. Научно определение параллелепипеда — призма, основанием которой служит параллелограмм. Часто ученики затрудняются ответить, чем отличается параллелограмм от параллелепипеда. Отличие в том, что параллелограмм — фигура плоская, двухмерная, а параллелепипед — объемное геометрическое тело, протяженное в трех измерениях, имеющее ширину, высоту и длину. Как выглядит параллелепипед, посмотрите на рисунке:
Виды параллелепипеда
Параллелепипед — многогранник. Его ограничивают шесть плоскостей, два основания, и четыре боковые грани. Линии, по которым соединяются грани, называются ребрами, а точки, в которых сходятся три ребра — вершинами. У фигуры 8 вершин.
Если грани имеют общее ребро, то их называют смежными, а те, у которых такого ребра нет — противоположными. Это же касается и вершин, если они не лежат на одной грани, то их тоже называют противоположными. Высота, ширина и длина прямоугольного параллелепипеда называются измерениями, они выходят из одной вершины. Если фигура не прямоугольная, то измерения и ребра не совпадают.
При построении параллелепипеда на рисунке можно провести ряд дополнительных линий, которые помогают при вычислении объема, площади поверхности, неизвестных длин и других параметров. Если линии проходят через противоположные вершины, то их называют диагоналями. У параллелепипеда их насчитывается четыре.
В геометрии выделяют несколько типов параллелепипедов, которые отличаются некоторыми свойствами:
- Прямой — фигура, у которой боковые грани являются прямоугольниками;
- Прямоугольный — все грани прямоугольники, не только боковые, но и основания. Объемный прямоугольник — это т есть такой параллелепипед.
- Наклонный — боковые грани находятся по отношению к основанию под углами, отличными от 900;
- Ромбоэдр — все грани представляют собой равные ромбы;
- Куб — все грани квадратны.
Свойства параллелепипеда
Для всех типов параллелепипедов можно выделить общие свойства, характеризующие фигуру. Таких свойств немного, запомнить их не сложно:
- Диагонали параллелепипеда в точке пересечения делятся пополам;
- Параллелепипед симметричен относительно точки пересечения диагоналей;
- Любой отрезок, соединяющий две точки на гранях параллелепипеда и проходящий через точку пересечения диагоналей, делится пополам;
- Противоположные грани равны и параллельны (вытекает из определения);
- Сумма квадратов измерений равна квадрату диагонали.
Твердо запомнив эти свойства несложно решить большинство задач школьной геометрии.
Основные формулы параллелепипеда
Кроме свойств этой фигуры нужно запомнить ряд несложных формул. Конечно, в процессе решения задачи можно вывести эти выражения самостоятельно. Но часто на это нет времени, лучше воспользоваться готовыми шаблонами.
Формула площади боковой поверхности прямого параллелепипеда — одна из самых простых. Sб=Ро∙h. В этой формуле только три величины, но одна из них составная:
H – высота параллелепипеда;
Р – периметр, АВ+ВС+АD+ CD.
Воспользоваться такой формулой можно только в том случае, если известны длины сторон основы и высота.
Площадь полной поверхности параллелепипеда определяется по формуле Sп=Sб+2Sо.
Как найти площадь боковой поверхности мы знаем из предыдущего пункта, а площадь Sо рассчитывается в зависимости от вида четырехугольника, лежащего в основании.
Объем прямого параллелепипеда тоже найти несложно, для этого достаточно умножить площадь основания на высоту. Объём V=Sо∙h
Формулы для прямоугольного параллелепипеда тоже не отличаются сложностью:
Sб=2c(a+b) в этой формуле а и b – стороны основания, с – высота, равна длине бокового ребра.
Площадь полной поверхности равна Sп=2(ab+bc+ac);
Объем V=abc, то есть, произведение всех трех измерений.
Когда же приходится вычислять площади и объем произвольного параллелепипеда, то показанные формулы не всегда срабатывают. Необходимо использовать законы векторной геометрии. При вычислении объема параллелепипеда через длину диагонали, необходимо использовать проекции на разные оси. Видимая простота формул — это только основа для сложной работы, требующей пространственного воображения и смекалки.